The Implicit Function Theorem: A PDE Example

This entry devotes an existence result for the following semilinear elliptic equation
-\Delta u + u = u^p+f(x)
in the whole space \mathbb R^n where 0<u \in H^1(\mathbb R^n).
Our aim is to apply the implicit function theorem. It is known in the literature that
Theorem (implicit function theorem). Let X, Y, Z be Banach spaces. Let the mapping f:X\times Y\to Z be continuously Fréchet differentiable.
If
(x_0,y_0)\in X\times Y, \quad F(x_0,y_0) = 0,
and
y\mapsto DF(x_0,y_0)(0,y)
is a Banach space isomorphism from Y onto Z, then there exist neighborhoods U of x_0 and V of y_0 and a Frechet differentiable function g:U\to V such that
F(x,g(x)) = 0
and F(x,y) = 0 if and only if y = g(x), for all (x,y)\in U\times V.
Let us now consider
X=L^2(\mathbb R^n), \quad Y=H_+^2(\mathbb R^n), \quad Z=L^2(\mathbb R^n).
Let us define
F(f,u)=-\Delta u + u - u^p-f(x), \quad f \in X, \quad u \in Y, \quad x \in \mathbb R^n.
It is not hard to see that Fréchet derivative of F at (f,u) with respect to u in the direction v is given by
{D_u}F(f,u)v = - \Delta v + v - p{u^{p - 1}}v.
Since -\Delta +I defines an isomorphism from Y to Z, it is clear to see that our PDE is solvable for f small enough in the X-norm.

No comments:

Post a Comment