The Implicit Function Theorem: How To Prove A Continuously Dependence On Parameters For Solutions Of ODEs

It is clear that the implicit function theorem plays an important role in analysis. From now on, I am going to demonstrate this significant matter from the theory of differential equations, both ODE and PDE, point of view.
Let us start with the following ODE
-u''-\alpha^2 u^{-q-1}+\beta^2u^{q-1}=0
on some domain \Omega \subset \mathbb R^n with \alpha \not\equiv 0 and \beta \not\equiv 0. We assume the existence result on W_+^{2,p} is proved for some p>1. We prove the following
Theorem. The solution u \in W_+^{2,p} depends continuously on (\alpha, \beta) \in L^\infty \times L^\infty.
Proof. Consider the map
\mathcal N : W_+^{2,p} \times (L^\infty \times L^\infty) \to L^p
taking
(u,\alpha,\beta) \mapsto -u''-\alpha^2 u^{-q-1}+\beta^2u^{q-1}.
This map is evidently continuous (since W_+^{2,p} is an algebra). One readily shows that its Fréchet derivative at (u, \alpha, \beta) with respect to u in the direction h is
\mathcal N'[u,\alpha ,\beta ]h = - h'' + \left[ {(q + 1){\alpha ^2}{u^{ - q - 2}} + (q - 1){\beta ^2}{u^{q - 2}}} \right]h.
The continuity of the map
(u,\alpha,\beta) \mapsto \mathcal N'[u,\alpha ,\beta ]
follows from the fact that W_+^{2,p} is an algebra continuously embedded in C^0(\Omega).
Since \alpha \not\equiv 0 and \beta \not\equiv 0, the potential
V={(q + 1){\alpha ^2}{u^{ - q - 2}} + (q - 1){\beta ^2}{u^{q - 2}}}
is not identically zero. Thus it is well-known that the map
-\Delta +V : W^{2,p} \to L^p
is an isomorphism.
The implicit function theorem then implies that if u_0 is a solution for data (\alpha_0, \beta_0), there is a continuous map defined near (\alpha_0, \beta_0) taking (\alpha, \beta) to the corresponding solution of the ODE. This establishes the conclusion.

No comments:

Post a Comment