Integral Calculus

Question: If the integral
\displaystyle \int_0^\infty f (x)dx
converges and a function y = g(x) is bounded then the integral
\displaystyle \int_0^\infty f (x)g(x)dx
converge.
Observation: It seems since g(x) is bounded by a constant called M, the integral \int_0^\infty f (x)g(x)dx is then dominated by M times \int_0^\infty f (x)dx which becomes a finite number.
Counter-example: The integral
\displaystyle \int_0^\infty \frac{\sin x}{x}dx
converges and the function g(x)=\sin x is bounded but the integral
\displaystyle \int_0^\infty \frac{\sin^2 x}{x}dx
diverges.
Explanation: What we thought is the following estimate
\displaystyle\left| {\int_0^\infty {f(x)g(x)dx} } \right| \leqslant \int_0^\infty {\left| {f(x)g(x)} \right|dx} \leqslant M\int_0^\infty {|f(x)|dx}.
However, the convergence of \int_0^\infty f (x)dx is not sufficient to imply that \int_0^\infty |f (x)|dx<\infty.

No comments:

Post a Comment