An Other Limit Supremum Of Sin Function

In the topic we showed that for any irrational \alpha the limit
\mathop {\lim }\limits_{n \to \infty } \sin \left( {n\alpha \pi } \right)
does not exist. In this topic, we consider the following limit
\mathop {\overline {\lim } }\limits_{n \to \infty } \sin \left( {nx} \right) .
To be precise, we prove that
\mathop {\overline {\lim } }\limits_{n \to \infty } \sin \left( {nx} \right) = 1
for almost every x \in [0,2\pi].
Solution. Let
\displaystyle A = \left\{ {x \in \left( {0,2\pi } \right): \frac{x} {\pi } \notin \mathbb{Q}} \right\}.
Then A is a measurable set of measure 2\pi. Moreover, for any x \in A,
\displaystyle\mathop {\overline {\lim } }\limits_{n \to \infty } \sin \left( {nx} \right) = 1.
Indeed for any x \in A, since
\displaystyle\left\{ {k\frac{x} {\pi } - 2l: l \in \mathbb{Z}} \right\}
is dense subgroup of \mathbb R there are sequences \{k_n\} and \{l_n\} of \mathbb Z such that
\displaystyle \mathop {\lim }\limits_{n \to \infty } \left( {{k_n}\frac{x} {\pi } - {l_n}} \right) = \frac{1} {2}.
Since
\displaystyle \frac{1} {2} \notin \left\{ {k\frac{x} {\pi } - 2l: k,l \in \mathbb{Z}} \right\}
\{k_n\} admits a subsequence \{k'_n\} either increasing to +\infty or decreasing to -\infty. If \mathop {\lim }\limits_{n \to \infty } {{k'}_n} = + \infty then
\mathop {\lim }\limits_{n \to \infty } \sin \left( {{{k'}_n}x} \right) = \mathop {\lim }\limits_{n \to \infty } \sin \left( {...
Otherwise \mathop {\lim }\limits_{n \to \infty } \left( { - 3{{k'}_n}} \right) = + \infty and
\mathop {\lim }\limits_{n \to \infty } \sin \left( { - 3{{k'}_n}x} \right) = \mathop {\lim }\limits_{n \to \infty } \sin \lef...

No comments:

Post a Comment